Synthesis of New Formyl and Aminomethyl Steroids via Homogeneous Catalysis

a Department of Organic Chemistry, University of Veszprém, H-8201 Veszprém, PO Box 158, Hungary
${ }^{\text {b }}$ Chemical Works of Gedeon Richter Ltd., H-1103 Budapest, Gyömrơi út 19/21, Hungary

New formyl-pregnene, formyl-androstene and the corresponding aminomethyl derivatives are synthesised selectively via hydroformylation with a rhodium-phosphine catalyst prepared in situ.

Homogeneous catalysis is a well established method for selective addition, but except for hydrogenation ${ }^{1}$ only a little information is available on this type of reaction of steroids. ${ }^{2.3}$ Catalysts prepared in situ from $\left[\{\mathrm{Rh}(\text { diene }) \mathrm{Cl}\}_{2}\right]$ and tertiary phosphines are efficient in selective hydroformylation of unsaturated steroids. ${ }^{4}$ In this paper we report the highly selective syntheses of ($20 R$)-3 $3,20 \beta$-dihydroxy- 16α-formyl-pregn-5-ene 2 and other formyl-androstane derivatives. The starting compound $\mathbf{1}$ was prepared in 82% yield by reduction of 3β-acetoxypregna- 5,16 -dien-20-one $\left\{[\alpha]_{\mathrm{D}}-70.3\right.$ (c 0.9 , chloroform, $25^{\circ} \mathrm{C}$), m.p. $168-171^{\circ} \mathrm{C}$; ${ }^{5}{ }^{1} \mathrm{H}$ NMR (60 MHz ; $\left.\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 0.90\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right), 1.06(\mathrm{~s}, 3 \mathrm{H}$, $\left.19-\mathrm{CH}_{3}\right), 1.28\left(\mathrm{~d}, 3 \mathrm{H}, 21-\mathrm{CH}_{3}\right), 3.4(\mathrm{~m}, 1 \mathrm{H}, 3 \alpha-\mathrm{H}), 4.3(\mathrm{~m}$, $1 \mathrm{H}, 20-\mathrm{H}), 5.3(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H})$ and $5.6(\mathrm{~m}, 1 \mathrm{H}, 16-\mathrm{H})\}$.

In the hydroformylation of $\mathbf{1}$ (Scheme 1) the double bond in position 5 remains intact even under relatively severe reaction conditions because of steric hindrance. The reaction of the 16 , 17 double bond was carried out with high chemo- and regio-selectivity. In a typical experiment the solid substrate 1 $(10 \mathrm{mmol})$ and a solution of $\left[\{\mathrm{Rh}(\mathrm{nbd}) \mathrm{Cl}\}_{2}\right](0.05 \mathrm{mmol}$; nbd $=$ norbornadiene $), \mathrm{PBu}_{3}(0.22 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{mmol})$ in benzene (50 ml) under argon was heated under pressure in an

Scheme 1 Conditions: $120^{\circ} \mathrm{C}, 100-120$ bar
autoclave. The product was obtained by fractional crystallization in 80% yield, and its structure (the stereochemistry of the formyl group at C-16) was based on mass spectral and NMR data using the DEPT, COSY90, HETCOR and ${ }^{1} \mathrm{H}\left\{{ }^{1} \mathrm{H}\right\}$ NOE methods \dagger [${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 0.87$ ($\mathrm{s}, 3 \mathrm{H}$, $\left.18-\mathrm{CH}_{3}\right), 1.02\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.14(\mathrm{~d}, J 6.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.21-\mathrm{CH}_{3}\right), 2.48$ (m, ${ }^{3} J_{16 \beta . \text { сно }} c a .3 .2,{ }^{3} J_{16 \beta, 17 \alpha} c a .11 .2,{ }^{3} J_{16 \beta .15 \alpha}$ ca. $2.8,{ }^{3} J_{16 \beta .15 \beta}$ ca. $\left.8.4 \mathrm{~Hz}, 1 \mathrm{H}, 16 \beta-\mathrm{H}\right), 3.52(\mathrm{~m}, 1 \mathrm{H}, 3 \alpha-\mathrm{H})$, $3.86(\mathrm{~m}, 1 \mathrm{H}, 20-\mathrm{H}), 5.34(\mathrm{dd}, 1 \mathrm{H}, 6-\mathrm{H})$ and $9.63(\mathrm{~d}, J 3.2 \mathrm{~Hz}$, $1 \mathrm{H}, 16-\mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.6\left(18-\mathrm{CH}_{3}\right)$, $19.4\left(19-\mathrm{CH}_{3}\right), 23.9\left(21-\mathrm{CH}_{3}\right), 121.0(6-\mathrm{CH}), 140.9(5-\mathrm{C})$ and 203.0 (16-CHO)]. Irradiation at different positions gives the following NOEs proving the 16α-formyl structure: CHO :

Scheme 2 Conditions: $120^{\circ} \mathrm{C}, 120$ bar

[^0]

4

$16-\mathrm{H}_{\beta}(3.1 \%), 15-\mathrm{H}_{\alpha}$ and $17-\mathrm{H}_{\alpha}(5.3 \%) ; 16-\mathrm{H}_{\beta}$: CHO (2.5%), $20-\mathrm{H}(4.2 \%), 15-\mathrm{H}_{\beta}(5.7 \%), 21-\mathrm{H}(1.7 \%) 18-\mathrm{H}(1.8 \%) ; 18-\mathrm{H}:$ $20-\mathrm{H}(4.5 \%), 12-\mathrm{H}_{\beta}(1.0 \%), 8-\mathrm{H}_{\beta}, 11-\mathrm{H}_{\beta}$ and $15-\mathrm{H}_{\beta}(6.6 \%)$, $16-\mathrm{H}_{\beta}(1.4 \%) ; m / z: 346$ (60.4), 328 (83.0), 313 (30.2), 310 (20.8), 295 (32.1), 217 (58.5), and 107 (100\%); m.p. 171$173^{\circ} \mathrm{C}$.

Hydroformylation of $\mathbf{1}$ in presence of several secondary amines resulted in the reductive amination of 2 (Scheme 2), i.e. in simultaneous formation of new aminomethyl steroids 3a-f in $47-82 \%$ yield. Similar compounds have been prepared previously in multi-step classical syntheses. ${ }^{6}$ Characterization of these aminomethyl derivatives was based on mass spectral and NMR data: 3a: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 0.69(\mathrm{~s}$, $\left.3 \mathrm{H}, 18-\mathrm{CH}_{3}\right), 1.01\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.18(\mathrm{~d}, J 6.3 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.21-\mathrm{CH}_{3}\right), 2.26(\mathrm{~m}, 1 \mathrm{H}, 16 \beta-\mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}, 3 \alpha-\mathrm{H}), 3.81(\mathrm{~m}$, $1 \mathrm{H}, 20-\mathrm{H}), 5.34(\mathrm{dd}, 1 \mathrm{H}, 6-\mathrm{H})$ and $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR: $\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 15.1\left(18-\mathrm{CH}_{3}\right), 19.5\left(19-\mathrm{CH}_{3}\right)$, $22.3\left(21-\mathrm{CH}_{3}\right), 121.4(6-\mathrm{CH}), 141.1(5-\mathrm{C}), 66.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 45.8$ $\left(\mathrm{NCH}_{3}\right) ; m / z: 430(8)$ and $113(100 \%) ;$ m.p. $197^{\circ} \mathrm{C}$.
We also succeeded in the hydroformylation of $3 \beta, 17 \beta$ dihydroxyandrosta- 5,15 -diene 4 . The double bond in ring B remained intact similarly, but the transformation of the double bond in ring D resulted in a mixture of four aldehyde isomers in the ratio 45:45:5:5(${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data). In the hydroformylation of the 3β-hydroxy- 5α-androst-16-ene $\mathbf{5}$,
mainly (72%) the 16α-formyl compound (${ }^{1} \mathrm{H}$ NMR: $\delta 9.63, J$ 2.1 Hz) was detected, but we have not yet been able to separate it from a second aldehyde isomer $(28 \%, \delta 9.74, J 1.2$ Hz).

Hydroformylation of the androstene derivatives 4 and 5 in presence of secondary amines produced directly the corresponding aminomethyl isomers (NMR data). The limited selectivity of the latter reactions clearly proves that the substituent at C -17 in the pregnadiene $\mathbf{1}$ has a direct influence on stereoselectivity

We thank G. Balogh (Gedeon Richter Ltd.), G. Szalontai and S. Iglewski (University of Veszprém) for recording the $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, and I. Bátori (University of Veszprém) for technical assistance. This work was supported by the Hungarian National Science Foundation (OTKA 466 and OTKA 605).

Received, 20th February 1992; Com. 2/00897A

References

1 L. Kollár, S. Tobrös, B. Heil and Z. Tuba, J. Mol. Catal., 1988, 47 33, and references cited therein.
2 P. F. Beal, M. A. Rebensdorf and J. E. Pike, J. Am. Chem. Soc. 1959, 81, 1231.
3 A. L. Nussbaum, T. L. Popper, E. P. Oliveto, S. Friedman and I. Wender, J. Am. Chem. Soc., 1959, 81, 1228.
4 S. Törös, L. Kollár, B. Heil and Z. Tuba, XIIIth International Conference on Organometallic Chemistry, Torino, 4th-9th September, 1988, Proc. 359.
5 L. Kohout, V. Sanda and J. Fajkos, Coll. Czech. Chem. Commun., 1982, 47, 1503.
6 P. Crabbé, L. M. Guerrero, J. Romo and F. Sánchez-Viesca, Tetrahedron, 1963, 19, 25.

[^0]: \dagger Abbreviations used: DEPT $=$ Distortionless enhancement of polarisation transfer; COSY90 = correlation spectroscopy; HETCOR $=$ heteronuclear correlation spectroscopy; $\mathrm{NOE}=$ nuclear Overhauser effect.

